

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Raman Scattering from $^{14}\text{N}_2$ and H_2 Bombarded Silicon Surface

M. S. Mathur^a; V. P. Derenchuk^a; J. S. C. McKee^a

^a Department of Physics, University of Manitoba, Winnipeg, Canada

To cite this Article Mathur, M. S. , Derenchuk, V. P. and McKee, J. S. C.(1984) 'Raman Scattering from $^{14}\text{N}_2$ and H_2 Bombarded Silicon Surface', Spectroscopy Letters, 17: 3, 165 — 180

To link to this Article: DOI: 10.1080/00387018408062676

URL: <http://dx.doi.org/10.1080/00387018408062676>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

RAMAN SCATTERING FROM $^{14}\text{N}_2^+$ and H_2^+ BOMBARDED SILICON SURFACE

KEY WORDS: Raman Scattering from implanted silicon

M.S. Mathur, V.P. Derenchuk and J.S.C. McKee

Department of Physics, University of Manitoba
Winnipeg R3T 2N2 CANADA

ABSTRACT:- The surface of a P type Si wafer was bombarded with $^{14}\text{N}_2^+$ and H_2^+ and the Raman spectrum of the implanted surface was obtained. The recorded spectrum not only confirms the information of various silicon-nitrogen, silicon-hydrogen, silicon-hydrogen-nitrogen-oxygen complexes but enables the identification of others.

INTRODUCTION

The process of ion implantation involves ionizing and accelerating atoms and causing them to enter a suitable material. Soon after penetrating the target material the energetic ion initiates a cascade of atomic collisions, sometimes very near the surface region; resulting in the formation of surface alloys of graded composition. Novel surfaces with interesting physical properties can thus be created by the technique of ion implantation. One such surface layer of silicon nitride is widely used as a passivating and dielectric thin film in semiconductor technology, and can be synthesized easily by the N_2^+

bombardment of silicon surface. It has been shown by Smith *et al* (1), Crowder *et al* (2) and Bourgoin *et al* (3) that the bombardment of crystalline silicon by a heavy dosage of ions ($\approx 10^{15}$ ions/cm²) results in the formation of a continuous layer of amorphous silicon on the crystalline surface. The dangling bonds of the amorphous silicon layer can be passivated by bonded hydrogen. Metal-nitride-oxide-semiconductor films have memory applications and the presence of hydrogen also effects its characteristics. We are interested in the Raman characteristics of the surface formed by N_2^+ as well as H_2^+ implantation of a P-type silicon surface. Being complementary to the IR data, this Raman study of the implanted silicon surface, as mentioned above, is important to fully establish the structures formed on the surface of silicon by the implantation of both N_2^+ and H_2^+ .

EXPERIMENTAL

A P-type single-crystal $\langle 111 \rangle$ cut Si wafer properly cleaned, etched and polished has been bombarded with ions produced in a linear accelerator* employing duo-plasmatron ion source. Dry CP-grade Nitrogen and Hydrogen gases are used as ion-source feed-in material and 30 keV $^{14}N_2^+$ and H_2^+ are implanted in the material. The total fluence is of the order of 10^{18} ions/cm². A liquid nitrogen cooled jacket is used around the target to prevent the deposition of pump oil vapours and to help achieve a good vacuum ($\approx 10^{-7}$ mm Hg).

The surface Raman facility at the University of Kentucky, Lexington (KY) USA, specifically designed to study the surfaces and surface Raman enhancements has been used to study the Raman characteristics of the implanted silicon surface. A sample wafer was mounted in an evacuated

* Linear Accelerator on Loan from Leo Narodny, Barbados Optical Co.

chamber and the 5145 Å line of Ar^+ laser was allowed to illuminate a small portion of the implanted area through a high pressure window. Using a standard 90° geometry for Raman scattering, scattered radiation was collected by a specially designed optical collection system, and a cylindrical lens was used to transfer the Raman scattered radiation through another high pressure window on to the entrance slit of a Jarrell-Ash double monochromator. The monochromator was driven by a Burleigh-Piezo-electric Inchworm. The entire operation of the monochromator and the data acquisition by a photon counting technique is computer controlled. Average dark noise of the cooled photomultiplier during the 5 sec/step was of the order of 9 counts. The data was stored on a disc and was transferred to a plotter for display as required. Signals significantly higher than the background mentioned earlier were taken as real.

RESULTS AND DISCUSSION

As demonstrated earlier (1-3), the ion bombardment of crystalline surfaces by a heavy dosage ($\geq 10^{15}$ ions/cm²) results in the formation of a continuous layer of amorphous silicon on the crystalline surface. Raman scattering from such a combination of crystalline and amorphous silicon should contain both amorphous and crystalline characteristics. Bourgoin *et al* (3) confirmed this by simultaneous observation of a crystalline peak at 522 cm⁻¹ as well as a-Si peak at 480 cm⁻¹ in the Raman spectrum. In our observations the presence of both 520 and 488 cm⁻¹ Raman peaks confirm the existence of a-Si layer on crystalline silicon surface. This combination of crystalline and amorphous silicon has been subjected to both $^{14}\text{N}_2^+$ and H_2^+ bombardment, resulting in the implantation of these ions in both types of silicon, which in turn is

expected to result in the formation of various complexes involving Nitrogen, Hydrogen and amorphous as well as crystalline silicon. Exposure of silicon to atmosphere results in the formation of a SiO_2 layer on the silicon surface, which should also be revealed in the Raman spectrum. Komarov *et al* (4) have shown that the irradiation of silicon crystal with N_2^+ dosage in excess of 10^{17} ions/cm² results in the formation of non-stoichiometric complexes like $\text{Si}_{x,y}$ along with the precipitates of the phase Si_3N_4 . Some of the characteristic activities of these complexes will be Raman active, and should be identifiable in the surface Raman spectrum of such a system. The Raman bands observed in our study of H_2^+ and N_2^+ implanted silicon are collected in Table 1 and are compared with the published IR and Raman data on silicon nitrogen and silicon hydrogen complexes. The Raman spectra of the N_2^+ and H_2^+ implanted crystalline silicon surface as recorded by us are displayed in Figures 1(a-g). Smith *et al* (1) pointed out the presence of 480 and 300 cm^{-1} Raman bands and associated them with the transverse optical and longitudinal acoustic structures in a-Si. Our 305 cm^{-1} Raman band and the 305 cm^{-1} IR absorption in $\alpha\text{-Si}_3\text{N}_4$ as observed by Komarov *et al* (4) are equivalent to the above 300 cm^{-1} Raman band (see Table 1). The Raman bands at 612 and 970 cm^{-1} are the overtones of the 305 and 488 cm^{-1} Raman bands discussed above, and following Brodsky *et al* (5) can be labelled as $\omega_{2\text{LA}}$ and $\omega_{2\text{TO}}$. Following the earlier observations of Dylewski *et al* (6), the 802 and 1035 cm^{-1} Raman bands can be attributed to Si-O and Si-N stretchings in SiO_2 and Si_3N_4 . Yadav *et al* (7) reported that upon annealing the implanted sample at 900°C, the Si-O and Si-N stretchings shifted to 1060 and 830 cm^{-1} . In our study Raman bands at 1070 (doublet) and 836 cm^{-1} are observed, suggesting the possibility of some annealing by the ion beam during bombardment. The 836 cm^{-1}

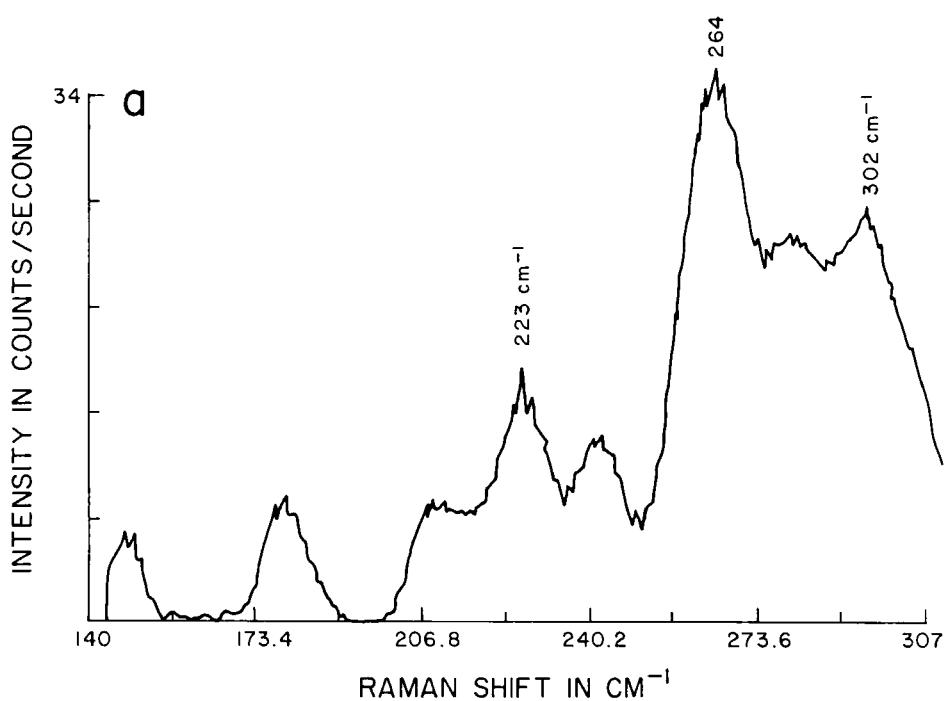


Fig. 1a

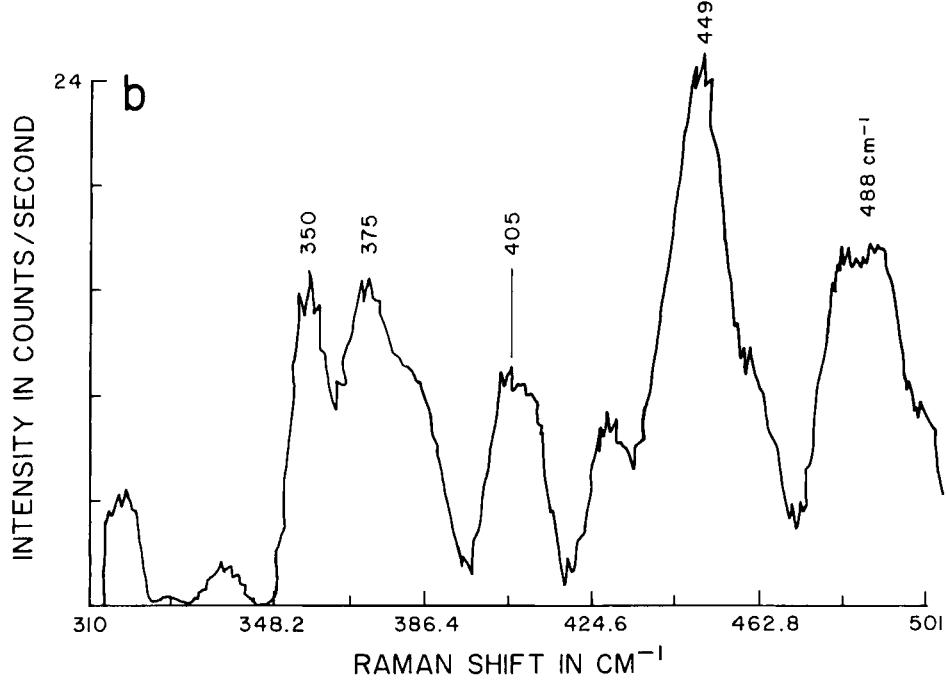


Fig. 1b

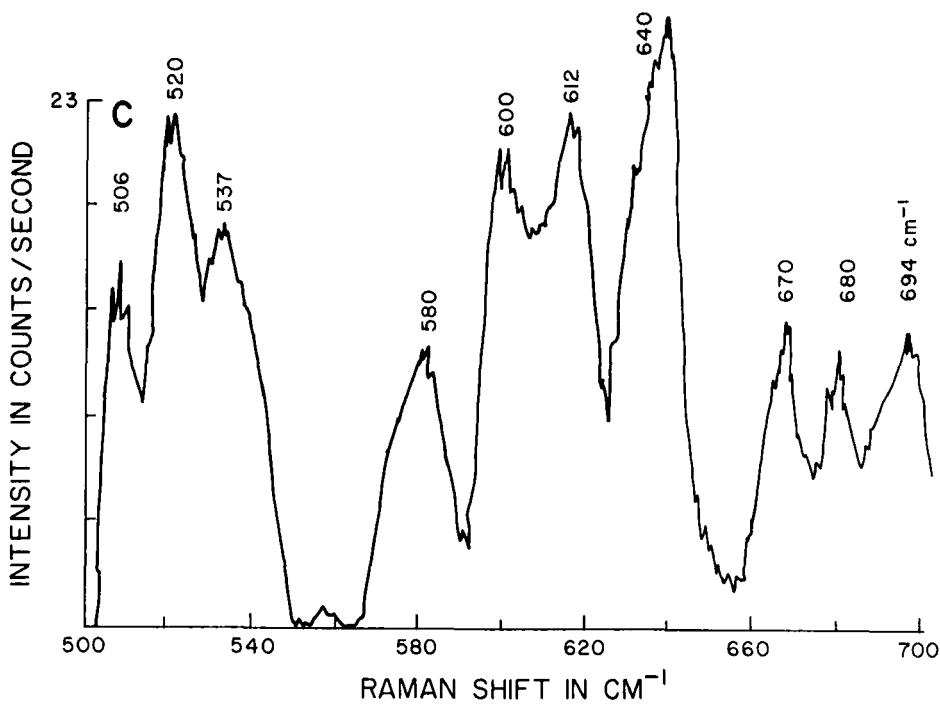


Fig. 1c

Raman band in our observation has a shoulder at 842 cm^{-1} which could be due to $(\text{SiH}_2)_n$ wagging mode (8). Brodsky *et al.* (5) observed a Raman band at 380 cm^{-1} (shoulder), and assigned it to ω_{LO} or the longitudinal optical structure in a-Si. We also observe a doublet at $360\text{--}375\text{ cm}^{-1}$ which corresponds well with the 352 and 375 cm^{-1} IR absorptions of $\alpha\text{-Si}_3\text{N}_4$ (4), and the 375 cm^{-1} Raman band can be attributed to ω_{LO} . Raman bands at 719 and 760 cm^{-1} are overtones of the 352 and 375 cm^{-1} Raman bands above. Hass (9) reported the Raman spectra of SiO_2 in the $10\text{--}1300\text{ cm}^{-1}$ region and observed bands at 60 , 410 , 490 , 600 , 800 , 1065 and 1200 cm^{-1} . The 410 cm^{-1} Raman band above with an IR counterpart at 443 cm^{-1} is associated with a 'bond-rocking' motion in which the atoms

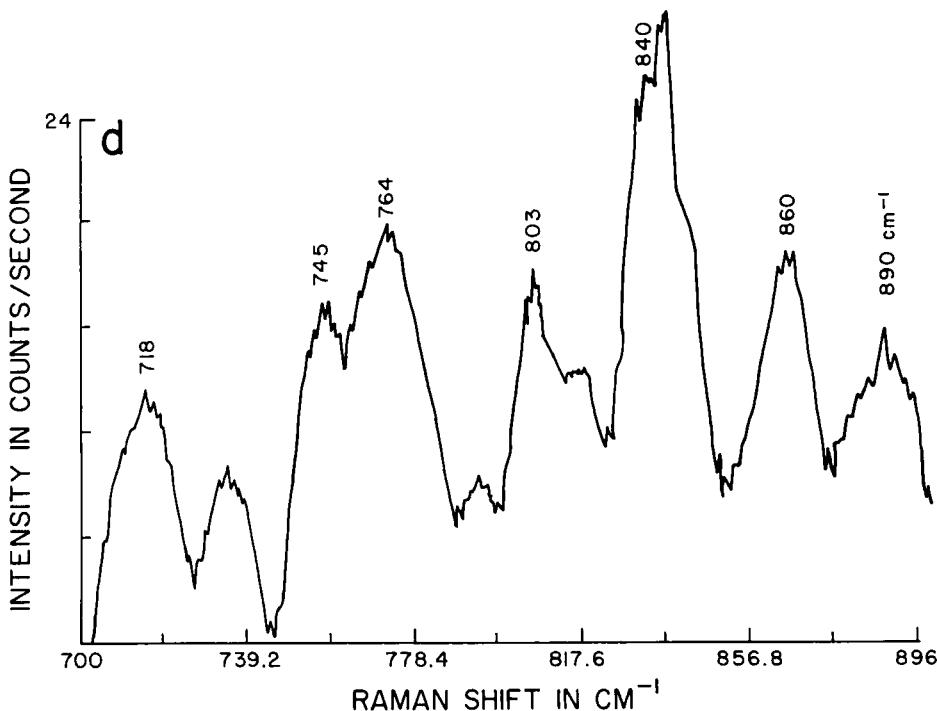


Fig. 1d

move roughly perpendicular to the Si-O-Si planes, and has its equivalent in our study at 445 cm^{-1} . The 800 cm^{-1} Raman band in SiO_2 spectrum of Hass, as mentioned above, has been associated with the 'bond-bending' type of motion in which the oxygen moves approximately at 90° to Si-Si lines in Si-O-Si planes. This mode was calculated by Lippincott *et al* (10) to be at 730 cm^{-1} . In our study this band appears at 803 cm^{-1} . The bond-stretching vibrations in SiO_2 in which the bridging oxygens move in opposite directions to their Si neighbours, and roughly parallel to the Si-Si lines was assigned by Hass (9) to the 1067 cm^{-1} Raman band. In our study the 1080 cm^{-1} component of the 1070 cm^{-1} doublet discussed earlier; could be the equivalent 'bond-stretching' vibration. Hass also

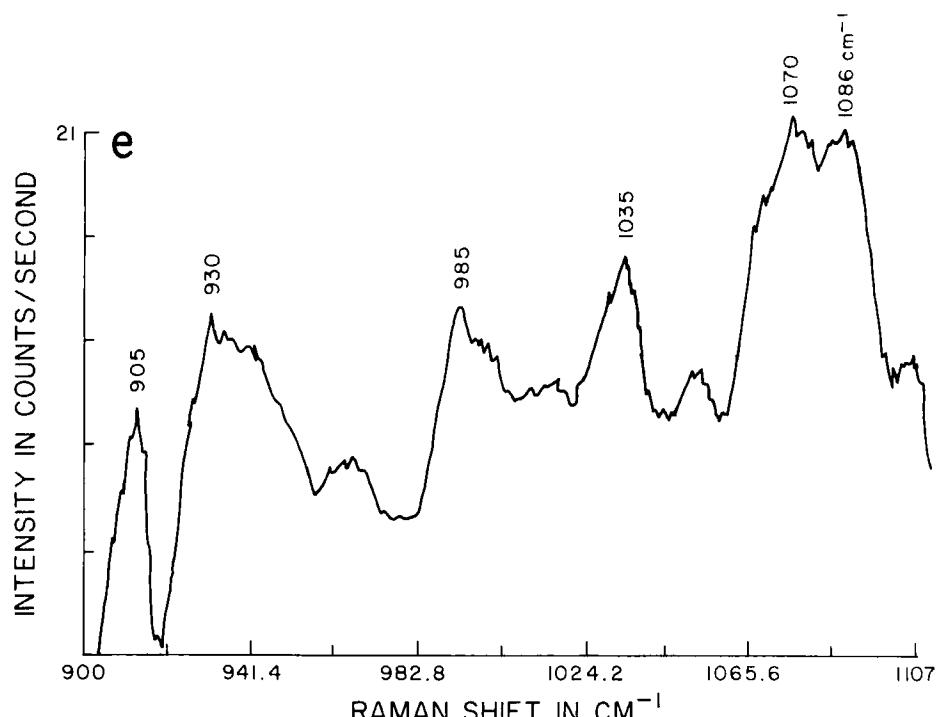


Fig. 1e

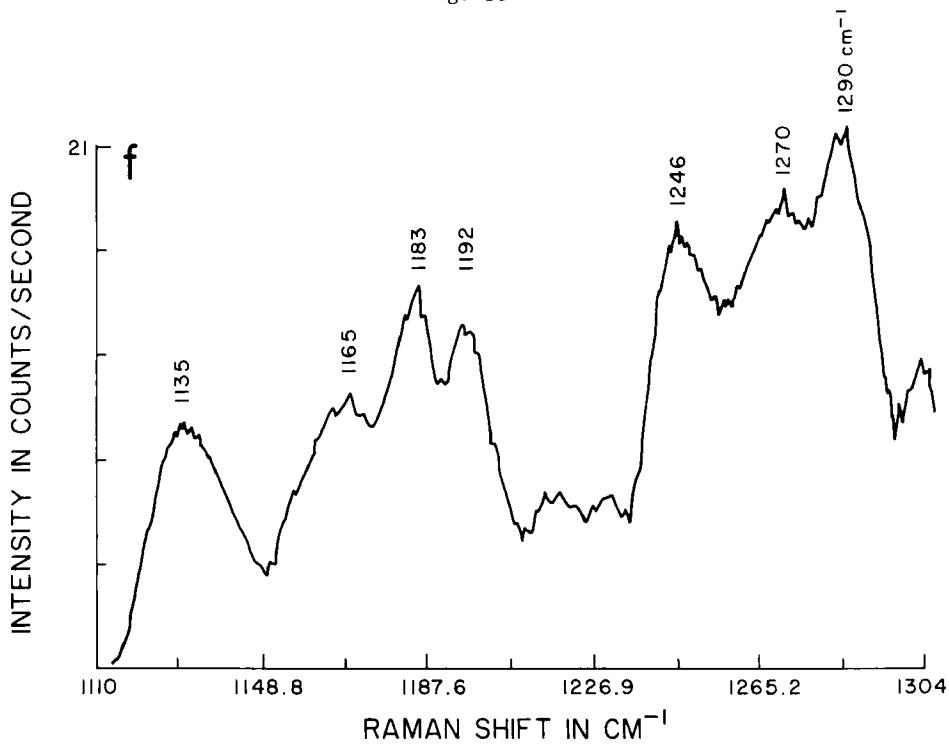


Fig. 1f

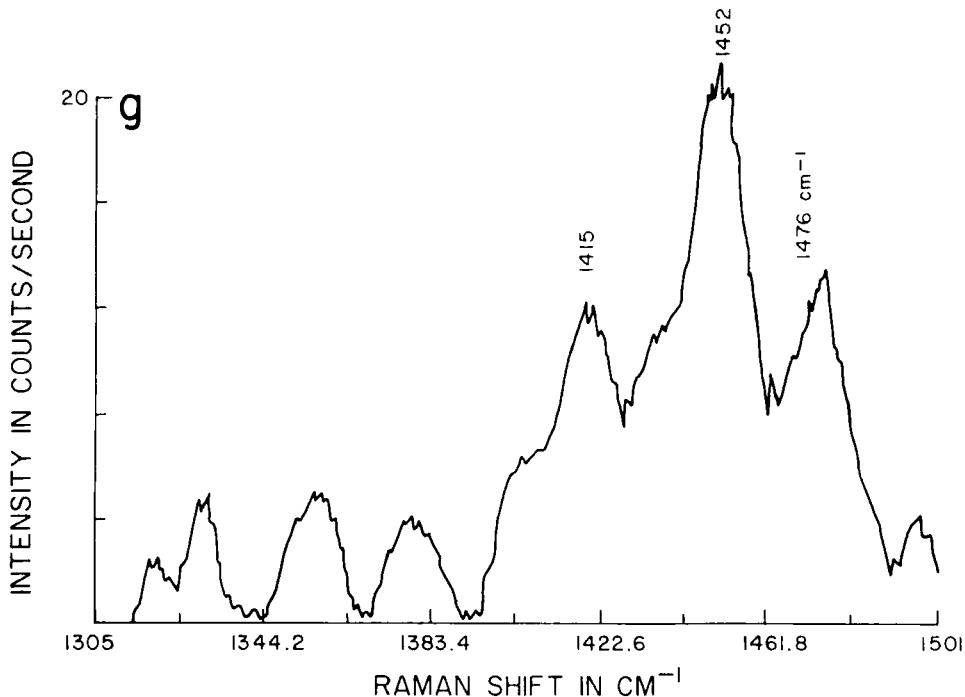


Fig. 1g

Fig. 1 (a-g) Raman spectrum of the $^{14}\text{N}_2^+$ and H_2^+ implanted surface of P-type silicon. Entrance slit = 250μ intermediate slit = 100μ , and exit slit = 250μ with 5 sec/step and 1 Watt laser power. a) $140-307\text{ cm}^{-1}$ region b) $310-501\text{ cm}^{-1}$ region c) $500-700\text{ cm}^{-1}$ region d) $700-896\text{ cm}^{-1}$ region e) $900-1107\text{ cm}^{-1}$ region f) $1110-1304\text{ cm}^{-1}$ region g) $1305-1501\text{ cm}^{-1}$ region. Dark noise during the 5 sec/step is of the order of 9 counts. Only those signals significantly higher than this dark noise here are being considered as real.

Table 1. IR Absorption and Raman Bands of N^+ and H^+ implanted Si

(a) Si_3N_4 IR (cm^{-1})	(b) $\alpha-Si_3N_4$ IR (cm^{-1})	(c) $\beta-Si_3N_4$ IR (cm^{-1})	(d) SiH IR (cm^{-1})	(e) SiO_2 IR (cm^{-1})	(f) SiO_2 Raman (cm^{-1})	(g) $^{14}N_2^+ + H_2^+$ imp. Si Raman (cm^{-1})
					223	
					264	
	305		300			305
355	352					350
370	375	376	380 (Sh)			375
405	403			410 (S)		405
432		445	443 (S)			449
460		461				
485	493	496	480	490 (S)		488
	501					506
	510					520
		537				537
570				568 (W)		580
				600 (W)		600
605			610			612
660			660			640
668						670
676	680					680
684						694
						718
750						745

(continued)

Table 1 (continued)

			764
		811 (M)	800 (W)
862	858	845	803
			840
			860
885	896	890	890
906		906	905
927			930
	985	980	985
1030	1045	1040	1035
		1061	1070
			1086
			1135
			1165
			1183
		1200	1192
			1246
			1270
			1290
			1415
			1452
		1460	1476

a) Komarov *et al* (4) b) Volgin *et al* (11) c) Miller (15) $^{14}\text{N}_2^+$, H_2^+ Hass (9)
 e) Knights *et al* (12) f) our data on the surface Raman of $^{14}\text{N}_2^+$, H_2^+
 implanted P-type Si.

S = strong, M = medium, W = weak, Sh = Shoulder

observed bands at 490 and 600 cm^{-1} , which were not assigned. The 600 cm^{-1} Raman band above appears at 600 cm^{-1} in our study also, and the 490 cm^{-1} band has been assigned and discussed earlier. The 1200 cm^{-1} Raman band of SiO_2 as observed by Hass (9) has its equivalent in our spectrum at 1192 cm^{-1} .

The Si_3N_4 spectra in the infrared region of 1200 to 200 cm^{-1} as observed by Komarov *et al* (4) indicates strong absorptions at 937, 885 and 847 cm^{-1} . Our Raman spectrum contains equivalent bands at 930, 890, and 861 cm^{-1} . The Si_3N_4 IR spectra as reported by Komarov *et al* (4) contains a band at 1030 cm^{-1} , which was reported by Volgin *et al* (11) as an IR absorption at 1045 cm^{-1} for (α - Si_3N_4) and at 1040 cm^{-1} for (β - Si_3N_4). Our Raman spectra contains a corresponding band at 1038 cm^{-1} .

Knights *et al* (12) reported the IR and Raman spectra of a-Silicon-hydrogen alloys with reference to Si_4H , Si_3H_2 , Si_2H_2 where upon, one, two and three hydrogen atoms respectively are bonded to silicon atom which in turn is bonded to silicon network. The hydrogen atoms thus act as termination of what otherwise would be dangling bonds. Knights *et al* (12) discussed the presence of the 650 cm^{-1} band as due to a Si-H stretching mode due to hydrogen bonded singly to the silicon atom. We are observing a Raman band at 640 cm^{-1} which very well could be the band discussed above. Knights *et al* (12) also discussed that a combination of SiH_2 and SiH_3 groups will produce modes in the 800-950 cm^{-1} region and predicted (by the use of four body forces) that both SiH_2 and SiH_3 clusters can exhibit a mode at 900 cm^{-1} . Our 905 cm^{-1} Raman band could very well be that predicted above. The 506 and 537 cm^{-1} Raman bands in our study find their equivalent in the IR studies of Volgin *et al* (11) at 510 and 537 cm^{-1} assigned to ν_4 (F_2), N-Si-N

bending vibrations in α -Si₃N₄ and β -Si₃N₄. The 1287 cm^{-1} Raman band in our study is an overtone of the 642 cm^{-1} band discussed earlier. Gruen *et al* (13) have reported a Si-H stretching vibration at 1460 cm^{-1} , and our 1452 cm^{-1} Raman band is in direct correspondence with it.

A band at 1180.4 cm^{-1} has been reported by Anderson *et al* (14) in the spectrum of B₂H₆. The presence of a 1183 cm^{-1} band in our spectrum suggests the possibility of the formation of B₂H₆ in the implanted P-type silicon with boron being the P-type impurity. Miller *et al* (15) have reported the IR spectrum of BN⁺ and observed a strong absorption at 1380 cm^{-1} . In our study a shoulder appears at 1395 cm^{-1} , which very well could be the equivalent. These bands are relatively weak, but they are definitely observable. The concentration of boron in silicon as a P-type impurity is in the ratio of 1 to 10³. The possibility of the impinging ion beams interacting with the relatively small concentration of boron atoms is very real. The small concentration of the boron complexes as Raman scatterers, will yield very weak Raman signals, which under normal circumstances would be difficult to resolve from the background. But the high resolution of the equipment used in the present study enables the detection of these boron complexes through their characteristic vibrations.

The possibility of the formation of other complexes is evidenced by the presence of some Raman bands, which have not been reported earlier. These additional bands appear at 1130, 1165, 1246, 1270 and 1476 cm^{-1} . We have mentioned the possibility of the formation of B₂H₆ as characterized by the presence of 1180.4 cm^{-1} band. BH₃ on the other hand has a characteristic Raman mode at 1125 cm^{-1} (16), the presence of a 1130 cm^{-1} Raman band in our observations again supports the possibility of the interaction of H⁺ with boron, the P-type impurity to produce few BH₃

molecules on the surface of the crystalline silicon. Another possibility can be the mutual interaction of N^+ and H^+ on the surface to form some complexes which are adsorbed on the surface. This is evidenced by the presence of 1165 and 1270 cm^{-1} Raman bands which are very close to the N-N-N symmetric stretch-bending and bending-symmetric stretching mode of N_3H reported by Pimentel *et al* (17) to be at 1168 and 1273 cm^{-1} respectively. The 1246 cm^{-1} Raman band in our observation might be the equivalent of the 1224 cm^{-1} IR absorption band of SiO_2 as reported by Anderson *et al* (18). The presence of the 1476 cm^{-1} Raman band provides strong evidence for the formation of planar N_2H_2 complex, which has been reported to exhibit $N = N$ stretching at 1481 cm^{-1} (19). Some of the observed bands, for example the 305, 375, 405, 488, 803 and 840 cm^{-1} bands are within few cm^{-1} of the bands of various complexes as reported in Table 1. This may be the reason why these bands are relatively broad. We are observing an envelope covering the various components too closely to be resolved.

CONCLUSION

The bombardment of P-type silicon with $^{14}N_2^+$ and H_2^+ not only results in the formation of an amorphous silicon layer but in various complexes involving silicon, nitrogen, hydrogen and boron, the P-type impurity. Any exposure of silicon to air results in the formation of a layer of silicon oxide, and thus oxygen also gets into the picture. In fact a complex ensemble of crystalline and polycrystalline silicon along with a host of complexes mentioned above has been subjected to Raman investigation, hence the larger number of Raman peaks. The simultaneous presence of SiO_2 , SiO , Si_3N_4 and SiH supports the synthesis of a hydrogenated silicon oxinitride layer of the type $(Si_xO_yN_z)H_w$. Complexes of the type B_2H_6 , BH_3 , BN^- , N_3H , SiO , SiO_2 in addition to both α and β type

Si_3N_4 and SiH have been detected in the Raman spectrums of the surface of $^{14}\text{N}_2^+$ and H_2^+ implanted P-type silicon. In addition the synthesis of N_3H and N_2H_2 has also been demonstrated. The sensitivity of the Raman technique is well established by the present results.

ACKNOWLEDGMENTS

The authors are grateful to Dr. Eugene B. Bradley and Mr. Hassan A. Marzouk for allowing the use and operation of their surface Raman facility at the University of Kentucky in Lexington (KY) U.S.A. The interest of Mr. L. Narodny in the present work and his generosity in allowing us to use his linear accelerator is greatly appreciated. This research was supported by a grant from Natural Sciences and Engineering Research Council of Canada.

REFERENCES

1. J.E. Smith Jr, M.H. Brodsky, B.L. Crowder, M.I. Nathan and A. Pinezuk, *Phys. Rev. Lett.* 26, 642 (1971).
2. B.L. Crowder, J.E. Smith Jr, M.H. Brodsky and M.I. Nathan, *Proc. Second Intern. Conf. Ion Implantation in Semiconductors* (Garmisch-Partenkirchen, May 1971, Ed. J. Rugeond and J. Gaul. Springer-Verlag, 1971) p. 255.
3. J.C. Bourgoin, J.F., Morhange and R. Besserman, *Rad. Effects* 22, 205 (1975).
4. F.F. Komarov, I.A. Rogalevich and V.S. Tishov, *Rad. Effects* 39, 163 (1978).
5. M.H. Brodsky, M. Cardona and J.J. Cuomo, *Phy. Rev. B*, 16, 8 (1977).
6. J. Dylewski and M.C. Joshi, *Thin Solid Films* 35, 327 (1976).
7. A.D. Yadav and M.C. Joshi, *Thin Solid Films* 91, 45 (1982).
8. G. Lucovsky, R.J. Nemanich and K.C. Knights, *Phy. Rev. B*, 19, 4, 2064 (1979).

9. M. Hass, *J. Phys. Chem. Solids* 31, 415 (1970).
10. E.R. Lippincott, A. VanValkenburg, C.E. Weir and E.N. Bunting, *J. Res. Natl. Bur-Stand.* 61, 61 (1958).
11. Yu, N. Volgin and Yu I. Ukhanov, *Opt. Spectrosc.* 38, 4, 412 (1975).
12. J. C. Knights, G. Lucovsky and R.J. Nemanich, *Phil. Mag. B.* 37, 4, 467 (1978).
13. D.M. Gruen, R. Verma and R.B. Wright, *J. Chem. Phys.* 64, 12, 5000 (1976).
14. T.F. Anderson and A.B. Burg, *J. Chem. Phys.* 6, 586 (1938).
15. F.A. Miller and C.H. Wilkins, *Anal. Chem.* 1253 (1952).
16. A. Kaldor and R.F. Porter, *J. Amer. Chem. Soc.* 93, 2140 (1971).
17. G.C. Pimentel, S.W. Charles and Kj. Rosengren, *J. Chem. Phys.* 44, 3029 (1966).
18. J.S. Anderson and J.S. Ogden, *J. Chem. Phys.* 51, 4189 (1969).
19. H.E. Hallam, Ed. "Vibrational Spectra of trapped species" p. 99, John Wiley & Sons Ltd. (1973).

Received: January 3, 1984

Accepted: January 26, 1984